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Abstract

Many events occur in real-world and social networks. Events
are related to the past and there are patterns in the evolution
of event sequences. Understanding the patterns can help us
better predict the type and arriving time of the next event.
In the literature, both feature-based approaches and gener-
ative approaches are utilized to model the event sequence.
Feature-based approaches extract a variety of features, and
train a regression or classification model to make a prediction.
Yet, their performance is dependent on the experience-based
feature exaction. Generative approaches usually assume the
evolution of events follow a stochastic point process (e.g.,
Poisson process or its complexer variants). However, the true
distribution of events is never known and the performance de-
pends on the design of stochastic process in practice. To solve
the above challenges, in this paper, we present a novel prob-
abilistic generative model for event sequences. The model is
termed Variational Event Point Process (VEPP). Our model
introduces variational auto-encoder to event sequence mod-
eling that can better use the latent information and capture
the distribution over inter-arrival time and types of event se-
quences. Experiments on real-world datasets prove effective-
ness of our proposed model.

Introduction

Events happen in real-world and on social networks. In on-
line shopping, an event can represent user behaviors, such
as click, cart or purchase (Liu et al. 2015). In geophysics,
an event can be an earthquake (Sakaki, Okazaki, and Mat-
suo 2010). In online social media, events can be user ac-
tions (e.g., like, comment and retweet) over time, which have
some features like user influence, content, time and connec-
tivity of the social network (Fu 2011; Rizoiu et al. 2017;
Shi et al. 2017). Online events usually follow the hot topics
that caused by some significant news. For example, Figure 1
shows the interest about “Apple” over time in the last year1.
Apparently, the peaks are related to special events of Apple
company (e.g., product launch conference) or holidays like
Christmas.
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1https://trends.google.com/trends/explore?q=apple
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Figure 1: Google trends about “Apple”. We add the relative
events on the figure.

The so-called event sequences contain a series of events of
different types in the continuous time domain. In an event se-
quence, the past events and the next event are related (Chang
et al. 2015). Take the previous three types of events as exam-
ples: buyers’ historical behaviors can be considered as their
decision making processes. The aftershocks can happen with
a month, or within days, from the main shock. Retweets
could be grouped with topics of interest and timeline. The
pattern of events may help cause or prevent future events.
Thus, techniques to discover patterns among events are ur-
gently required, so that the future of an event sequence can
be accurately predicted (Xu et al. 2018).

In the literature, feature based methods extract relevant
features and apply different machine learning algorithms to
predict the type and arrival time of the future events (Naveed
et al. 2011; Cheng et al. 2014; Bakshy et al. 2011; Za-
man et al. 2010). However, these models heavily depend
on manually selected features. It is a fatal flaw as designing
features requires much expertise, especially for large-scale
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dataset with high dimensional features, which may severely
limit its application. Recently, some other prior arts based
on generative approaches are proposed, (Shen et al. 2014;
Cao et al. 2017; Luo et al. 2015; Lukasik et al. 2016), in
which historical events are modeled to have impact on fu-
ture ones. However, the generative methods depend on the
design of stochastic process and the information hidden in
the sequences cannot be fully leveraged.

Variational Auto-Encoder (VAE) (Kingma and Welling
2014) is a powerful class of probabilistic models and has
the ability to model complex distributions. In recent years,
VAE are used in time-series (Babaeizadeh et al. 2018;
Denton and Fergus 2018; Hu et al. 2017; Li and Mandt
2018). These models integrate VAE with RNN/LSTM to
build a bridge between high interpretability and high predic-
tive power. Along this line, in this paper, we present a novel
probabilistic generative model for event sequences which we
call Variational Event Point Process or VEPP. Firstly, we
use LSTM to embed the event sequences, so the features
can be automatically extracted and utilized by the power-
ful neural network. Secondly, our model introduces varia-
tional auto-encoder to event sequence modeling that can use
the latent information and capture the distribution over event
sequences. Finally, on two real-world datasets, we find that
VEPP has higher log-likelihood in the mission of predict-
ing event type and lower error in the mission of predicting
time intervals. The experiments demonstrate that VEPP can
model the future of event sequences.

Related Work
In this section, we briefly summarize the related work to
deal with the event prediction problem as two groups, i.e.,
feature-based and generative approaches.

The first category is feature based methods, which first
extract some relevant features, including content, user in-
formation, original posters, network structure, and temporal
features (Cheng et al. 2014; Lian et al. 2015; Wang et al.
2015). Then different machine learning algorithms are ap-
plied to build a regression or classification model, such as
content-based models (Naveed et al. 2011), simple regres-
sion models (Cheng et al. 2014), regression trees (Bakshy
et al. 2011) and probabilistic collaborative filtering (Zaman
et al. 2010). However, these methods require much labori-
ous feature engineering with expertise, which is hard to de-
sign, and their performance is highly sensitive to the quality
of features. Besides, such approaches also have limitation
in practice because they cannot be used in real-time online
settings, like real-time event detection on Twitter. Given the
large amount of data being produced every second, it is prac-
tically impossible to extract all the necessary features so the
application is severely limited.

The second type is generative approaches which are usu-
ally based on temporal point process, like Poisson process
and its complexer variants (e.g., Reinforced Poisson Pro-
cesses, Hawkes Process and Self-Correcting Process). A
temporal point process can be used to capture the inter-
arrival times of event sequences (Daley and Vere-Jones
2007). It directly models complicated event sequences in
which historical events have influences on current and future

ones. Reinforced Poisson Processes (RPP) is employed to
model the phenomena in social networks (Shen et al. 2014).
Hawkes process, a variant of Poisson process, has been
proven to be useful for describing real-world data in social
network analysis (Cao et al. 2017). Furthermore, multiply
variants of Hawkes process are proposed to solve the issues
of event sequences. Luo et al. (2015) proposed multi-task
multi-dimensional Hawkes processes for modeling event se-
quences. Lukasik et al. (2016) applied Hawkes processes for
rumour stance classification on Twitter. However, in practice
the true distribution of events is never known and the perfor-
mance depends on the design of stochastic process. Besides,
these methods generally are not directly optimized for future
events. They cannot fully leverage the information implied
in the sequences for prediction. There still remains a gap be-
tween the interpretability and predictability.

Preliminaries

In this section, we first give the problem definition, and then
briefly introduce the two basic models for the temporal point
process and Variational Auto-Encoders.

Problem definition

As shown in Figure 2, the input is a sequence of events
x1:n = (x1, · · · , xn), where xn is the n-th event. The
event xn = (kn, τn) is represented by the event type kn ∈
{1, 2, · · · ,K} (K discrete event classes) and the time inter-
val τn ∈ R

+. The time interval τn = tn − tn−1 is the differ-
ence between the starting time of event xn−1 and xn. Given
a sequence of events x1:n−1, the event sequence modeling
task is to produce a distribution over the event type kn and
the time interval τn of the next happening event. We aim to
develop probabilistic models to predict what and when the
next event will happen.

Temporal point process

A temporal point process is a random process which is used
to capture the time intervals of event sequences (Daley and
Vere-Jones 2007). A temporal point process is characterized
by the conditional intensity function λ(tn|x1:n−1), which is
conditioned on the past events x1:n−1. The conditional in-
tensity is the expected infinitesimal rate at which events are
expected to occur around time t. Given the n−1 past events,
the probability density function for the time interval of next
event is:

f(τn|x1:n−1) = λ(τn|x1:n−1)e
− ∫ τn

0
λ(u|x1:n−1)du. (1)

The Poisson process (Kingman 2005) is the simplest and
most ubiquitous example of point process, which assumes
that events occur independently of one another. The condi-
tional intensity is λ(τn|x1:n−1) = λ, where λ is a positive
constant.

Furthermore, more complex point processes have been
proposed, like Hawkes Process (Hawkes 1971) and Self-
Correcting Process (Isham and Westcott 1979). All these
processes try to model the dependency on the past events.
For example, Hawkes process is a self-exciting process in
which the arrival of an event causes the conditional intensity

174



(k1, t1) (k2, t2) (k3, t3) p(z4)

k4 0.66 0.23 0.11

k4 0.30 0.56 0.24

k4 0.09 0.17 0.74

…

p(t4)

p(t4)

p(t4)Type 1 Type 2 Type 3

VEPPEvent history
Distribution over 

future event

Figure 2: The data flowchart of VEPP.

function to increase. The conditional intensity of Hawkes
Process is:

λ(tn|x1:n−1) = λ0(tn) +

n−1∑
i=1

φ(t− Ti), (2)

where Ti < t are all the event time having occurred before
current time tn, and which contribute to the event intensity
at time tn. λ0(tn) is a deterministic base intensity function,
and φ is called the memory kernel.

However, the true model of the dependencies is never
known in practice (Mei and Eisner 2017) and the perfor-
mance depends on the design of conditional intensity. In this
work, we learn a variational model that fits the conditional
intensity by the history of events.

Variational Auto-Encoders

A Variational Auto-Encoder is a generative model which can
effectively model complex multimodal distributions over the
data space. A VAE introduces a set of latent random vari-
ables z, designed to capture the variations in the observed
variables x. The joint distribution is defined as: pθ(z|x) ∝
pθ(x|z)pθ(z). The simple prior pθ(z) is usually chosen to be
a multivariate Gaussian. The parameters of complex likeli-
hood pθ(x|z) are produced by neural networks. Approximat-
ing the intractable posterior pθ(z|x) with a recognition neu-
ral network qφ(z|x) the parameters of the generative model
θ as well as the recognition model φ can be jointly optimized
by maximizing the evidence lower bound (ELBO) L on the
marginal likelihood pθ(x):

log pθ(x) = KL(qθ||pθ) + L(θ, φ)

≥ L(θ, φ) = −Eqφ

[
log

qφ(z|x)
pθ(z, x)

]
. (3)

Recent works apply VAEs to time-series data including
video (Babaeizadeh et al. 2018; Denton and Fergus 2018;
Mehrasa et al. 2019), text (Hu et al. 2017), and audio (Li and
Mandt 2018; Chung et al. 2015). Such models usually inte-
grate a time-step VAE with RNN/LSTM. The ELBO thus

becomes a summation of time-step-wise variational lower
bound:

Lθ,φ =

N∑
n=1

[
Eqφ(z1:n|x1:n)[log pθ(xn|x1:n−1, z1:n)]

−KL(qφ(zn|x1:n)||pθ(zn|x1:n−1))
]
. (4)

Variational Event Point Process

In this section, we give the details of our VEPP model. We
propose a generative model for event sequence modeling
by using the VAEs. Figure 3 shows the architecture of our
model. Overall, the types of events and their time intervals
are encoded using a recurrent VAE model. At each step, the
model uses past events to create a distribution over latent
codes zn, a sample of which is then decoded into two prob-
ability distributions: one over the possible event types and
another over the time intervals for the next event.

Event representing and embedding

As shown in Figure 3(a), at time step n, the model takes
the event xn as input, which is the prediction target, and
also the past events x1:n−1. These inputs are used to product
a conditional distribution qφ(zn|x1:n) from which a latent
code zn is sampled. The true distribution over latent vari-
ables zn is intractable. We rely on a time-dependent infer-
ence network qφ(zn|x1:n) that approximates it with a con-
ditional Gaussian distribution N (μφn

, σ2
φn

). To prevent zn
from just copying xn, we force qφ(zn|x1:n) to be close to
the prior distribution p(zn) using a Kullback-Leibler diver-
gence term.

At each step during training, a latent variable zn is drawn
from the posterior distribution qφ(zn|x1:n). The output event
x̂n is then sampled from the distribution pθ(xn|zn) of the
conditional generative model which is parameterized by θ.
For convenience, we assume the event type and time inter-
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vals are conditionally independent given the latent code zn:

pθ(xn|zn) = pθ(kn, τn|zn)
= pkθ(kn|zn)pτθ (τn|zn), (5)

where pkθ(kn|zn) and pτθ (τn|zn) are the conditional gener-
ative model for event type and time interval, respectively.
It is a standard assumption in event prediction (Du et al.
2016). The sequential model generates two probability dis-
tributions: a categorical distribution over the event types and
a temporal point process over the time interval for the next
event.

The event types are modeled with a multinomial distri-
bution in which case kn can only take a finite number of
values:

K∑
i=1

pkθ(kn = i|zn) = 1, (6)

where pkθ(kn = i|zn) is the probability that event type i will
occur, and K is the total number of event types.

The time interval follows an exponential distribution
whose parameter is λ(zn), similar to a standard temporal
point process model:

pτθ (τn|zn) = λ(zn)e
−λ(zn)τ

n

if τn ≥ 0, (7)

where pθ(τn|zn) is a probability density function over vari-
able τn and λ(zn) is the intensity of the temporal point pro-
cess, which depends on the latent variable sample zn.

At step n, the current event xn is represented as a vector
xemb
n with a two-step embedding strategy. First, we compute

a representation for the event type kn and the time interval
τn separately. Then, we concatenate these two representa-
tions and get a new representation xemb

n of the event:

kemb
n = Embk(kn),

τemb
n = Embτ (τn), (8)

xemb
n = Embk,τ ([k

emb
n , τemb

n ]).

Here, Embk, Embτ and Embk,τ represent the embedding
functions. A one-hot encoding is used to represent the event
type kn.

Generation

The VEPP contains a VAE at every time step. However,
these VAEs are conditioned on the state variable hn−1 of an
LSTM. It will help the VAE to take into account the temporal
structure of the sequential data. Unlike a standard VAE, the
prior on the latent random variable is no longer a standard
Gaussian distribution, but follows the distribution:

zn ∼ N (μn, σ
2
n),

μn, σ
2
n = fprior(hn−1), (9)

where μn and σn are the parameters of the conditional prior
distribution and fprior can be any highly flexible function
such as neural networks.

xn-1 LSTMEmbedding Decoderzn n

(a) At each time step, the model uses the history of event sequences
and inter-arrival times to generate a distribution over latent codes.

xn

hn+1hnhn-1

zn

(b) Graphical illustrations of operations of the VEPP.

Figure 3: Architecture of VEPP.

Firstly, we sample zn from the prior to generate an event
at step n. The parameters of the prior distribution are calcu-
lated based on the past n− 1 events x1:n−1. Then, an event
type k̂n and time interval τ̂n are generated as follows:

k̂n ∼ pkθ(kn|zn),
τ̂n ∼ pτθ (τn|zn). (10)

The decoder network for event type fk
θ (zn) is a MLP with

a softmax output to generate the probability distribution in
Equation (6):

pkθ(kn|zn) = fk
θ (zn). (11)

The decoder network for time interval fτ
θ (zn) is another

MLP, producing the parameter of the point process model
for temporal distribution in Equation (7):

λ(zn) = fτ
θ (zn). (12)

The LSTM encodes the current event and the past events
into a vector representation:

hn = LSTMφ(x
emb
n , zemb

n , hn−1). (13)

Recurrent networks turn variable length sequences into
meaningful, fixed-sized representations. The parameteriza-
tion of the generative model results in the factorization:

p(x1:N , z1:N ) =

N∏

n=1

p(xn|z1:n, x1,n−1)p(zn|x1:n−1, z1:n−1)

(14)

Inference

The posterior is proportional to the product of the likelihood
and the prior. So the approximate posterior will not only be
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Table 1: Statistics of datasets

Dataset K number of sequences number of event tokens sequence length
train test train test min mean max

Retweets 3 20,000 2,000 2,156,116 216,405 50 109 264
MemeTrack 4,895 96,391 2,470 383,548 10,440 2 5 31

a function of xn but also of hn−1 following the equation:

zn|xn ∼ N (μz,n, σ
2
z,n),

μz,n, σ
2
z,n = Enc(xn, hn−1), (15)

where μz,n and σz,n denote the parameters of the approx-
imate posterior. The encoding of the approximate posterior
and the decoding for generation are tied through the LSTM
hidden state hn−1. This conditioning on hn−1 results in the
factorization:

q(z1:N , x1:N ) =

N∏
n=1

q(zn|x1:n, z1:n−1). (16)

Learning

We train the model by optimizing the variational lower
bound over the entire sequence comprised of N steps:

Lθ,φ(x1:N ) =

N∑
n=1

(Eqφ(zn|x1:n)[log pθ(xn|zn)]

−KL(qφ(zn|x1:n)||pθ(zn|x1:n−1))). (17)

Given the latent code zn, the event type and time interval
are conditionally independent, so the log-likelihood can be
written as follows:

Eqφ(zn|x1:n)[log pθ(xn|zn)] = Eqφ(zn|x1:n)[log p
k
θ(kn|zn)]

+ Eqφ(zn|x1:n)[log p
τ
θ (τn|zn)]. (18)

Given the form of pkθ , the log-likelihood reduces to a cross
entropy between the predicted event type pkθ(kn|zn) and the
ground truth k∗n. Given the ground truth time interval τ∗n ,
we calculate its log-likelihood over a small time interval Δτ

under the predicted distribution.

log

[∫ τ∗
n+Δτ

τ∗
n

pτθ (τn|zn)dτn
]

= log(1− e−λ(zn)δt)− λ(zn)τ
∗
n. (19)

Experiments

In this section, we evaluate the performance of VEPP on
two real-world datasets, i.e., Retweets Dataset (Zhao et al.
2015) and MemeTrack Dataset (Leskovec, Backstrom, and
Kleinberg 2009).

Datasets

Retweets dataset The Retweets dataset includes 166, 076
retweet sequences, each corresponding to some original
tweet. Each retweet event is labeled with the retweet time

relative to the original tweet creation, so that the time of the
original tweet is 0. Each retweet event is also marked with
the number of followers of the retweeter. As usual, we as-
sume that these 166, 076 streams are drawn independently
from the same process, so that retweets in different streams
do not affect one another.

Unfortunately, the dataset does not specify the identity of
each retweeter, only his or her popularity. To distinguish dif-
ferent kinds of events that might have different rates and dif-
ferent influences on the future, following previous study of
Mei and Eisner (2017), we divide the events into K = 3
types: retweets by “small”, “medium” and “large” users.
Small users have fewer than 120 followers (50% of events),
medium users have fewer than 1, 363 (45% of events), and
the rest are large users (5% of events). Given the past retweet
history, our model must learn to predict how soon it will be
retweeted again and how popular the retweeter is (i.e., which
of the three types).

We randomly sampled disjoint train and test sets with
20, 000 and 2, 000 sequences respectively. We truncated se-
quences to a maximum length of 264, which affected 20% of
them. For computing training and test likelihoods, we treated
each sequence as the complete set of events observed on
the interval [0, T ], where 0 denotes the time of the original
tweet, which is not included in the sequence, and T denotes
the time of the last tweet in the truncated sequence.

MemeTrack dataset The MemeTrack Dataset considers
the reuse of fixed phrases, or “memes”, in online media. It
contains time-stamped instances of meme use in articles and
posts from 1.5 million different blogs and news sites, span-
ning 10 months from August 2008 till May 2009, with sev-
eral hundred million documents.

The K event types correspond to the different web-
sites. Given one meme’s past trajectory across websites, our
model can learn to predict how soon and where it will be
mentioned again.

We followed the previous study of Gomez-Rodriguez et
al. (2013) to process the dataset, which selected the top
5, 000 websites in terms of the number of memes they men-
tioned. We truncated sequences to a maximum length of 31
and selected the minimum length of 2. We randomly sam-
pled disjoint train and test sets with 96, 391, and 2, 470 se-
quences respectively, treating them as before.

Table 1 shows statistics of the two datasets. The two
datasets have very different characteristics.

Architecture details

The VEPP model architecture is shown in Figure 3. Event
type and inter-arrival time inputs are each passed through
2-layer MLPs with ReLU activation. They are then concate-
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Figure 4: Comparison of RMSE on Retweets and MemeTrack dataset.

nated and followed with a linear layer. Numbers of hidden
nodes of LSTMs for Retweets and MemeTrack datasets are
256 and 64, respectively. Networks are 2-layer MLPs, with
ReLU activation after the first layer. Dimension of the latent
code is 256. Event decoder is a 3-layer MLP with ReLU at
the first two layers and softmax for the last one. The time
decoder is also a 3-layer MLP with ReLU at the first two
layers, with an exponential non-linearity applied to the out-
put to ensure the parameter of the point process is positive.

Implementation details

The models are implemented with TensorFlow (Abadi et
al. 2016) and are trained using the Adam (Kingma and Ba
2015) optimizer for 1, 000 epochs with batch size 32 and
learning rate 0.001. We split both datasets into training and
test sets containing 70% and 30% of samples respectively.
We select the best model during training based on the model
loss (18) on the test set.

Baselines

Poisson Process The intensity function is a constant,
which produces an estimate of the average inter-event gaps.

Hawkes Process (HP) Hawkes process is a self-exciting
point process, in which past events from the history conspire
to raise the intensity of each type of events. Such excitation
is positive, additive over the past events, and exponentially
decaying with time.

Self-Correcting Process (SCP) We fit a self-correcting
process with the intensity function in the book of Daley and
Vere-Jones (2007).

Recurrent Marked Temporal Point Processes (RMTPP)
RMTPP is proposed in the study of Du et al. (2016). It views
the intensity function of a temporal point process as a non-
linear function of the history, and uses a recurrent neural

Table 2: Log-likelihood of event type prediction

Dataset Model Log-likelihood Error (%)
HP −7.06 49.48

Retweets RMTPP −6.88 38.02
VEPP −6.48 37.68

HP −802.2 90.37
MemeTrack RMTPP −14.3 86.85

VEPP −10.7 85.04

network to automatically learn a representation of influences
from the event history. Compared with VEPP, RMTPP does
not have the stochastic latent code that models diverse dis-
tributions over event type and time interval.

Metrics

We use log-likelihood (LL) of event type to compare our
model with the HP and RMTPP. For Poisson Process and
Self-Correcting Process, their performance on event type
prediction are similar to Hawkes Process and not very sat-
isfactory.

LL = log
n∏

i=1

f(xi|Ω)

=

n∑
i=1

log f(xi|Ω) =
n∑

i=1

l(Ω|xi).

We also compare Root Mean Square Error (RMSE) of inter-
arrival time prediction.

RMSE =

√√√√ 1

N

N∑
i=1

(τ̂i − τi)2
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Figure 5: Log-likelihood of HP, RMTPP and VEPP on Retweets and MemeTrack dataset.

Table 3: Log-likelihood for VEPP with different latent vari-
able dimensionality

Latent size 32 64 128 256 512
Retweets -7.08 -6.58 -6.58 -6.48 -6.68

MemeTrack -10.9 -10.7 -10.5 -10.2 -10.0

Experiment Results

Overall performance Table 2 shows experimental results
that compare VEPP with HP and RMTPP. VEPP outper-
forms HP and RMTPP on both Retweets and MemeTrack
datasets. We believe that this is because the VEPP model
is better in modeling the complex distribution over future
events. For Retweets dataset, three methods all have rela-
tively good performance. The reason may be the events of
Retweets dataset have less types, so the patterns of event
sequences are easy to model. Correspondingly, for Meme-
Track dataset, VEPP and RMTPP significantly outperform
HP. It is may because the event types are nearly 5, 000 and
much larger than Retweets datasets. It also proves that VAE
can use the latent information of event sequences and VEPP
has the ability to modeling the complex distribution over
future events. The prediction error is high for MemeTrack
dataset due to the large number of types.

Figure 4 shows RMSE in predicting the time interval
given the history of previous events. VEPP achieves the low-
est error, i.e., outperforms the other methods under the met-
ric. The three methods based on point process have relatively
higher error, because the designed point process does not fit
the real situation. RMTPP and VEPP achieve better results,
since they can learn the complex distribution. While VEPP
can also use the latent information over the event sequence,
it performs even better.

Learning curves We compare the learning curves of HP,
RMTPP and VEPP in terms of the number of train se-
quences, as shown in Figure 5. In Figure 5(b), HP preforms

not well and cannot be displayed on the figure because of
the figure size. It shows how the performance changes when
training data are increased. We can see that our VEPP model
outperforms RMTPP, and both significantly outperform the
Hawkes process. These observations demonstrate the robust-
ness and effectiveness of VEPP model in event prediction.

Sensitive of latent variable dimensionality of LSTM We
next explore the architecture of our model by varying the
sizes of the latent variable. Table 3 shows the log-likelihood
of our model for different sizes of the latent variable. We
see that as we increase the size of the latent variable, we can
model a more complex latent distribution which results in
better performance.

Conclusion

We presented a novel probabilistic model for sequence data,
a variational auto-encoder that captures uncertainty in event
types and arrival time. As a generative model, it could pro-
duce event sequences by sampling from a prior distribution,
the parameters of which were updated based on neural net-
works that control the distributions over the next event type
and temporal occurrence. The model could also be used to
analyze given input sequences of events to determine the
likelihood of observing particular sequences. We demon-
strated empirically that the model is effective for capturing
the uncertainty inherent in event prediction. In future, we
will take into account the structural and contextual informa-
tion to model the event sequences.

Acknowledgments

This research was partially supported by grants from the Na-
tional Key Research and Development Program of China
(No. 2016YFB1000904), and the National Natural Science
Foundation of China (Grants No. U1605251, 61727809).

179



References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.;
Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. 2016.
Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Imple-
mentation.
Babaeizadeh, M.; Finn, C.; Erhan, D.; Campbell, R. H.; and Levine,
S. 2018. Stochastic variational video prediction. In 6th Interna-
tional Conference on Learning Representations.
Bakshy, E.; Hofman, J. M.; Mason, W. A.; and Watts, D. J. 2011.
Everyone’s an influencer: quantifying influence on twitter. In
Proceedings of the fourth ACM international conference on Web
search and data mining.
Cao, Q.; Shen, H.; Cen, K.; Ouyang, W.; and Cheng, X. 2017.
Deephawkes: bridging the gap between prediction and understand-
ing of information cascades. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management.
Chang, B.; Zhu, F.; Chen, E.; and Liu, Q. 2015. Information source
detection via maximum a posteriori estimation. In 2015 IEEE In-
ternational Conference on Data Mining.
Cheng, J.; Adamic, L.; Dow, P. A.; Kleinberg, J. M.; and Leskovec,
J. 2014. Can cascades be predicted? In Proceedings of the 23rd
international conference on World wide web.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.; and
Bengio, Y. 2015. A recurrent latent variable model for sequential
data. In Advances in neural information processing systems.
Daley, D. J., and Vere-Jones, D. 2007. An introduction to the
theory of point processes: volume II: general theory and structure.
Springer Science & Business Media.
Denton, E., and Fergus, R. 2018. Stochastic video generation with
a learned prior. In Proceedings of the 35th International Confer-
ence on Machine Learning.
Du, N.; Dai, H.; Trivedi, R.; Upadhyay, U.; Gomez-Rodriguez, M.;
and Song, L. 2016. Recurrent marked temporal point processes:
Embedding event history to vector. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining.
Fu, T.-c. 2011. A review on time series data mining. Engineering
Applications of Artificial Intelligence.
Gomez-Rodriguez, M.; Leskovec, J.; and Schölkopf, B. 2013.
Modeling information propagation with survival theory. In Pro-
ceedings of the 30th International Conference on Machine Learn-
ing.
Hawkes, A. G. 1971. Spectra of some self-exciting and mutually
exciting point processes. Biometrika.
Hu, Z.; Yang, Z.; Liang, X.; Salakhutdinov, R.; and Xing, E. P.
2017. Toward controlled generation of text. In Proceedings of the
34th International Conference on Machine Learning.
Isham, V., and Westcott, M. 1979. A self-correcting point process.
Stochastic Processes and Their Applications.
Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic
optimization. In 3rd International Conference on Learning Repre-
sentations.
Kingma, D. P., and Welling, M. 2014. Auto-encoding variational
bayes. In 2nd International Conference on Learning Representa-
tions.
Kingman, J. F. C. 2005. Poisson processes. Encyclopedia of bio-
statistics.
Leskovec, J.; Backstrom, L.; and Kleinberg, J. 2009. Meme-
tracking and the dynamics of the news cycle. In Proceedings of

the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining.
Li, Y., and Mandt, S. 2018. Disentangled sequential autoencoder.
In Proceedings of the 35th International Conference on Machine
Learning.
Lian, D.; Xie, X.; Zheng, V. W.; Yuan, N. J.; Zhang, F.; and Chen,
E. 2015. Cepr: A collaborative exploration and periodically return-
ing model for location prediction. ACM TIST.
Liu, Q.; Zeng, X.; Zhu, H.; Chen, E.; Xiong, H.; Xie, X.; et al.
2015. Mining indecisiveness in customer behaviors. In 2015 IEEE
International Conference on Data Mining.
Lukasik, M.; Srijith, P.; Vu, D.; Bontcheva, K.; Zubiaga, A.; and
Cohn, T. 2016. Hawkes processes for continuous time sequence
classification: an application to rumour stance classification in twit-
ter. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics.
Luo, D.; Xu, H.; Zhen, Y.; Ning, X.; Zha, H.; Yang, X.; and Zhang,
W. 2015. Multi-task multi-dimensional hawkes processes for mod-
eling event sequences. In Twenty-Fourth International Joint Con-
ference on Artificial Intelligence.
Mehrasa, N.; Jyothi, A. A.; Durand, T.; He, J.; Sigal, L.; and Mori,
G. 2019. A variational auto-encoder model for stochastic point
processes. In IEEE/CVF Computer Vision and Pattern Recognition.
Mei, H., and Eisner, J. M. 2017. The neural hawkes process: A
neurally self-modulating multivariate point process. In Advances
in Neural Information Processing Systems.
Naveed, N.; Gottron, T.; Kunegis, J.; and Alhadi, A. C. 2011.
Bad news travel fast: A content-based analysis of interestingness
on twitter. In Proceedings of the 3rd international web science
conference.
Rizoiu, M.-A.; Lee, Y.; Mishra, S.; and Xie, L. 2017. A tutorial
on hawkes processes for events in social media. arXiv preprint
arXiv:1708.06401.
Sakaki, T.; Okazaki, M.; and Matsuo, Y. 2010. Earthquake shakes
twitter users: real-time event detection by social sensors. In Pro-
ceedings of the 19th international conference on World wide web.
Shen, H.; Wang, D.; Song, C.; and Barabási, A.-L. 2014. Mod-
eling and predicting popularity dynamics via reinforced poisson
processes. In Twenty-eighth AAAI conference on artificial intelli-
gence.
Shi, L.-l.; Liu, L.; Wu, Y.; Jiang, L.; and Hardy, J. 2017. Event
detection and user interest discovering in social media data streams.
IEEE Access.
Wang, Y.; Yuan, N. J.; Lian, D.; Xu, L.; Xie, X.; Chen, E.; and
Rui, Y. 2015. Regularity and conformity: Location prediction us-
ing heterogeneous mobility data. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining.
Xu, T.; Zhu, H.; Zhong, H.; Liu, G.; Xiong, H.; and Chen, E. 2018.
Exploiting the dynamic mutual influence for predicting social event
participation. IEEE Transactions on Knowledge and Data Engi-
neering.
Zaman, T. R.; Herbrich, R.; Van Gael, J.; and Stern, D. 2010. Pre-
dicting information spreading in twitter. In Workshop on computa-
tional social science and the wisdom of crowds, nips.
Zhao, Q.; Erdogdu, M. A.; He, H. Y.; Rajaraman, A.; and Leskovec,
J. 2015. Seismic: A self-exciting point process model for predict-
ing tweet popularity. In KDD 2015.

180


